## Math 261

Spring 2023
Lecture 51


Feb 19-8:47 AM

| Rotate the region bounded by $y=\sqrt{x}, y=4$, and $x=0$ by $y=-2$. <br> 1) Ref. Rect 1 A.O.R. Yes <br> 2) Region not complafly attached to A.OR. Yes <br> washer method $\begin{aligned} & R=4-(-2)=6 \\ & r=\sqrt{x}-(-2)=\sqrt{x}+2 \end{aligned}$ $V=\int_{0}^{16} \pi\left[R^{2}-r^{2}\right] d x=\pi \int_{0}^{16}\left[6^{2}-(\sqrt{x}+2)^{2}\right] d x$ <br> $=\pi \int_{0}^{16}[36-x-4 \sqrt{x}-4] d x=\pi \int_{0}^{16}\left[32-x-4 x^{1 / 2}\right] d x$ <br> $\left.\left.=\pi\left(32 x-\frac{x^{2}}{2}-\frac{4 x^{3 / 2}}{3 / 2}\right)\right]_{0}^{16}=\pi\left(32 x-\frac{1}{2} x^{2}-\frac{8}{3} x \sqrt{x}\right)\right]_{0}^{16}$ <br> $=\pi\left(32 \cdot 16-\frac{1}{2} \cdot 16^{2}-\frac{8}{3} \cdot 16 \sqrt{16}\right)=\frac{640 \pi}{3}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



May 16-9:38 AM

$$
\begin{aligned}
& \text { Given } \begin{aligned}
f(x) & =\frac{1}{6}\left(x^{2}+4\right)^{3 / 2} \\
\text { find } f^{\prime}(x) & =\frac{1}{6} \cdot \frac{x_{2}^{2}}{2}\left(x^{2}+4\right)^{\frac{3}{2}-1} \cdot 2 x \\
& =\frac{1}{2}\left(x^{2}+4\right)^{1 / 2} \cdot x
\end{aligned} \\
& \begin{aligned}
\text { Sind } 1+\left[f^{\prime}(x)\right]^{2} & =1+\left[\frac{x}{2}\left(x^{2}+4\right)^{1 / 2}\right]^{2} \\
& =1+\frac{x^{2}}{4}\left(x^{2}+4\right) \\
& =\frac{x^{4}}{4}+x^{2}+1
\end{aligned} \\
& \text { finish this } \quad=\left(\frac{x^{2}}{2}+1\right)^{2} \\
& \text { Now find } \sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{\left(\frac{x^{2}}{2}+1\right)^{2}} \\
&
\end{aligned}
$$

find the are length along
the curve given by $f(x)=\frac{1}{6}\left(x^{2}+4\right)^{3 / 2}$
From $x=0$ to $x=\underset{(0, \sqrt{5}}{(0,4)} \underset{\substack{5}}{\left(\sqrt{5}, \frac{9}{2}\right)}$
$L=\int_{a}^{b} \underset{\text { Last slide }}{\underbrace{\text { from }}_{0}} \sqrt{1+\left[S^{\prime}()^{2}\right.} d x=\int_{0}^{\sqrt{5}}\left(\frac{x^{2}}{2}+1\right) d x$
$\left.=\left(\frac{1}{2} \cdot \frac{x^{3}}{3}+x\right)\right]_{0}^{\sqrt{5}}=\frac{1}{6}(\sqrt{5})^{3}+\sqrt{5}$
$=\frac{1}{6} \cdot 5 \sqrt{5}+\sqrt{5}$
$=\frac{5}{6} \sqrt{5}+\frac{6}{6} \sqrt{5}$
$=\left(\frac{5}{6}+\frac{6}{6}\right) \sqrt{5}=\frac{11 \sqrt{5}}{6}$

May 17-9:00 AM



May 17-9:19 AM


Now rotate the same region by $x=4$.


Ref. Rect. Parallel to A.O.R.
Shell Method Height of Ref. Rect. $\Rightarrow x^{2}$
Distance From

$$
\begin{aligned}
x+? & =4 \\
? & =4-x
\end{aligned}
$$

$$
V=\int_{0}^{!=4-x} 2 \pi \cdot \text { Distance } \cdot \text { Height } \cdot d x=\int_{0}^{2} 2 \pi(4-x) \cdot x^{2} d x
$$

make sure to finish
May 17-9:40 AM
find fave for $f(x)=\frac{x}{\sqrt{1+x^{2}}}$ on $[0, \sqrt{3}]$
$f(x)$ is cont. on $[0, \sqrt{3}]$

$$
\begin{array}{rlrl}
f_{\text {ave }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{\sqrt{3}-0} \int_{0}^{\sqrt{3}} \frac{x}{\sqrt{1+x^{2}}} d x \\
& =\frac{1}{2 \sqrt{3}} \int_{0}^{\sqrt{3} \frac{2 x}{\sqrt{1+x^{2}}} d x} & & \\
& & & d u=1+x^{2} \\
& =\frac{1}{2 \sqrt{3}} \int_{1}^{4} \frac{1}{\sqrt{u}} d u & & x=0 \rightarrow u=\sqrt{3} \rightarrow u=4 \\
& \left.=\frac{1}{2 \sqrt{3}} \int_{1}^{4} u^{-1 / 2} d u=\frac{1}{2 \sqrt{3}} \cdot \frac{u^{1 / 2}}{u / 2}\right]_{1}^{4} \\
& \left.=\frac{1}{\sqrt{3}}[\sqrt{u}]\right]_{1}^{4}=\frac{1}{\sqrt{3}}(\sqrt{4}-\sqrt{1})=\frac{1}{\sqrt{3}}=\left[\frac{\sqrt{3}}{3}\right.
\end{array}
$$

